# TOTAL SYNTHESIS OF PROSTAGLANDIN D $\mathbf{2}_{2}$ 

Enwin F. Jenny*, Peter Schäublin, Research Department, Pharmaceuticals Division, Hans Fritz, Hermann Fuhrer, Central Function Research, Physics Department, CIBA-GEIGY Limited, CH-4002 Basle, Switzerland.

(Received in UK 8 April 1974; accepted for publication 17 May 1974)

In 1972 Sih et al. ${ }^{1)}$ reported on the biosynthesis and chemistry of $9 \alpha, 15(\mathrm{~S})$-dihydroxy-11-oxo-13-trans-prostenoic acid ( $\mathrm{PGD}_{1}$ ), and last year, Hayashi et al. ${ }^{2}$ ) published a relatively simple procedure for the total synthesis of $\mathrm{PGD}_{2}$. In the context of our work on prostaglandins, we too have synthesized $\mathrm{PGD}_{2}$ and studied its NMR and UV spectroscopic properties. In the course of these investigations it became clear that Hayashi's ${ }^{2}$ ) interpretation of the NMR spectrum of $\mathrm{PGD}_{2}$ is incorrect. Sih's proton assignment ${ }^{3}$ ) for $\mathrm{PGD}_{1}$ is ambiguous and incomplete. Both authors fail to mention $H(12)$, which is situated between a carbonyl group and a double bond. This special feature distinguishes prostaglandins of the D-series from all the other prostaglandins investigated so far. Furthermore, our $\mathrm{PGD}_{2}$ displays UV-absorption in the presence of sodium hydroxide which differs markedly from that of $\mathrm{PGD}_{1}$ described by Sih et al. ${ }^{1}$.
$\mathrm{PGD}_{2}$ was synthesized from the known lactone $\mathrm{I}^{4}$ ). Etherification of the 15 -hydroxyl group with dihydropyrane, hydrolysis of the 11 -p-phenyl-benzoate ester grouping with $\mathrm{MeOH} / \mathrm{K}_{2} \mathrm{CO}_{3}$, reduction of the lactone with diisobutylaluminum hydride, and acetylation of the two hydroxyl groups with acetic anhydride in the presence of pyridine led to compound II. Treatment of II with a mixture of $\mathrm{HOAc}, \mathrm{H}_{2} \mathrm{O}$, THF $(5: 5: 1)$ for 15 minutes at $25^{\circ}$ afforded the lactol III, which was reacted under standard conditions with the Wittig reagent derived from 5-triphenyl-phosphoniopentanoic acid and sodio methyl-sulfinylcarbanide in DMSO yielding a mixture of the two isomeric compounds IV and $V$ in the approximate ratio of $3: 1$. Under basic conditions an acyl migration reaction involving IV and $V$ seems to take place. A small amount of 15 -tetrahydropyranyl-PGF $2 \alpha$ was also isolated. The mixture of IV and V was treated with dihydropyrane to give VI and VII. The free acids were liberated from VI and VII when the mixture was hydrolyzed with $\mathrm{HOAc}, \mathrm{H}_{2} \mathrm{O}$, THF ( $5: 5: 1$ ) for 15 minutes at $25^{\circ}$. The acetoxy groups were hydrolyzed in $\mathrm{MeOH} /$ $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the resultant 11- and 9-hydroxyl groups in VIII and IX, respectively, were oxidized with Jones' reagent to the corresponding ketones. These, in turn, were transformed to a $3: 1$ mixture of racemic $\mathrm{PGD}_{2}(\mathrm{X})$ and $\mathrm{PGE}_{2}(\mathrm{XI})$ by treatment with a mixture of $\mathrm{HOAc}, \mathrm{H}_{2} \mathrm{O}$, THF ( $6: 3: 1$ ) at $40^{\circ}$ for 6 hrs.
$\mathrm{PGD}_{2}$ and $\mathrm{PGE}_{2}$ were easily separated chromatographically on silica gel. On TLC plates with $\mathrm{AcOEt}, \mathrm{AcOH}$, isooctane, $\mathrm{H}_{2} \mathrm{O}$ (11:2:5:10) as the liquid phase, $\mathrm{PGE}_{2}$ and $\mathrm{PGD}_{2}$ had $\mathrm{R}_{\mathrm{f}}$ values of 0.18 and 0.28 , respectively.
$\mathrm{PGD}_{2}$ was esterified with diazomethane to the corresponding methylester XII.


1

1. DHP ( $100 \%$ )
2. $\mathrm{MeOH} / \mathrm{K}_{2} \mathrm{CO}_{3}(83 \%)$
3. DIBAH ( $99 \%$ )
4. $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}(93 \%)$


III



IV $R^{\prime}=H, R^{2}=A c$
$\vee R^{1}=A c, R^{2}=H$



VIII $R^{1}=T H P, R^{2}=H$
IX $R^{1}=H, R^{2}=T H P$

$+$


XI (dI-PGE 2 ( $17 \%$ )

A $10^{-4}$ molar solution of $\mathrm{PGD}_{2}(\mathrm{X})$ in ethanol-water (1:9) did not show any appreciable UV absorption between 220 and $350 \mathrm{~m} \mu$. When the compound was dissolved in a mixture of ethanol and a 0.05 -molar aqueous NaOH -solution (1:9; $10^{-4}$-molar), the following absorption values were recorded:

| minutes after <br> mixing | $\lambda_{\text {max }}$ <br> m $\mu$ | $\varepsilon_{\text {max }}$ |
| :---: | :---: | :--- |
| 3.5 | 244 | 5200 |
| 145 | $\begin{cases}247 \\ 277 & 5100 \\ & 4200 \text { (shoulder) } \\ 24 \times 60 & \begin{cases}242 \\ 285\end{cases} \\ \hline\end{cases}$ | 4800 |

These absorption maxima are in accordance with the proposed structure for $\mathrm{PGD}_{2}$ and its possible reaction products. We did not observe the absorption at $232 \mathrm{~m} \mu$ after 145 minutes, reported by Sih et al. ${ }^{1)}$ (Fig. 11, p. 2276). The structure X of racemic $\mathrm{PGD}_{2}$ is confirmed by $100-$ and $270-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ investigations on the ester XII.


The sequence of protons on carbons $15,14,13,12,8,9$, and 10 especially can be unequivocally deduced from single and double resonance experiments; parameters for these protons are given in the following table:
$\mathrm{H}(\mathrm{C}-15): \quad 4.09 \mathrm{ppm}$ (broad quartet $\mathrm{J}=7 \mathrm{~Hz}$ )
$\mathrm{H}(\mathrm{C}-14): \quad 5.63 \mathrm{ppm}$ (doublet of doublets, $\mathrm{J}=7$ and 16 Hz , becomes a doublet upon irradiation at $4.09 \mathrm{ppm}, \mathrm{J}=16 \mathrm{~Hz}$ )
$\mathrm{H}(\mathrm{C}-13$ ): $\quad 5.43 \mathrm{ppm}$ (doublet of doublets, $\mathrm{J}=16$ and 8.5 Hz , collapses to a doublet upon irradiation at 2.87 ppm , $\mathrm{J}=16 \mathrm{~Hz}$ )
$\mathrm{H}(\mathrm{C}-12): \quad 2.87 \mathrm{ppm}$ (doublet of doublets, $\mathrm{J}=12$ and 8.5 Hz , collapses to a doublet upon irradiation at 5.43 ppm , $\mathrm{J}=12 \mathrm{~Hz}$, and to a doublet upon irradiation at $1.95 \mathrm{ppm}, \mathrm{J}=8.5 \mathrm{~Hz}$ )
$\mathrm{H}(\mathrm{C}-8)$ : $\quad 1.95 \mathrm{ppm}$ (broad multiplet, simplifies to an eightline multiplet upon irradiation at $4.47 \mathrm{ppm}, \mathrm{J}=12$, $10.5,4.5 \mathrm{~Hz}$ )
$\mathrm{H}(\mathrm{C}-9): \quad 4.47 \mathrm{ppm}$ (broadened multiplet, $\nu_{1 / \mathrm{g}}=10 \mathrm{~Hz}$, becomes a doublet upon irradiation at $2.45 \mathrm{ppm}, \mathrm{J}=4 \mathrm{~Hz}$ ) $\mathrm{H}_{\alpha}(\mathrm{C}-10), \mathrm{H}_{\beta}(\mathrm{C}-10): 2.45 \mathrm{ppm}$ ('doublet', sharpens upon irradiation at 4.47 ppm )

The other proton signals observed ( $5.45-5.58 \mathrm{ppm}$ multiplet for olefinic $\mathrm{H}, 3.68 \mathrm{ppm}$ singlet for $\mathrm{OCH}_{3}$ and $2.8-0.9 \mathrm{ppm}$ multiplet for aliphatic H ) are also in accord with the structure of $\mathrm{PGD}_{2}$.

The trans coupling constant of 12 Hz between protons on $\mathrm{C}-12$ and $\mathrm{C}-8$ is remarkably large, while the other couplings between the protons in the five-membered ring are rather small, the cis coupling between $\mathrm{H}-8$ and $\mathrm{H}-9$ being about 4 Hz , and both couplings between $\mathrm{H}-9$ and the protons on $\mathrm{H}-10$ not exceeding about 3 Hz . These findings are compatible with an envelope conformation of the substituted cyclopentanone ring with $\mathrm{C}-8$ out of the plane of the four other carbon atoms. In such a conformation $\mathrm{H}-12$ and $\mathrm{H}-8$ adopt quasi-axial positions and the dihedral angles between $\mathrm{H}-8$ and $\mathrm{H}-9$ and between $\mathrm{H}-9$ and the two protons on $\mathrm{C}-10$ are about $60^{\circ}$.

## NOTES AND LITERATURE REFERENCES:

1) P.S. Foss, C.J. Sih, C. Takeguchi, and H. Schnoes, Biochemistry 11, 2271 (1972).
2) M. Hayashi and T. Tanouchi, JOC 38, 2115 (1973).
3) Sih et al. ${ }^{1)}$ erroneously refer to $\mathrm{H}(9)$ as the 'proton geminal to hydroxyl at $\mathrm{C}-11$ '.
4) E.J. Corey, S.M. Albonico, U. Koelliker, T.K. Schaaf, R.K. Varma, JACS 93, 1491 (1971).
